<u>Counts</u>

We've built a lot of fancy predictive models to, in part, determine which words (or parts of speech) are associated with a particular set of textual documents. What if we think about this problem directly, and just build a table showing how often a document occurs with a given label and a given term.

	Spam	Not Spam	
!	178	40	
no !	211	333	

Counts

How strong of an associatation is there between the two? To see, let's compute the row and column counts.

Probabilities

Now, we will erase (for the moment) the counts and compute the probabilities associated with each category on its own.

Expected Probabilities

Given just the totals, what the expected proportion of entries that should be in each cell? We can get these by multiplying the associated row and column probabilities.

	Spam	Not Spam	
!	0.510 × 0.286	0.490 × 0.286	218 28.6%
no !	0.510 × 0.714	0.490 × 0.714	544 71.4%
	389 51.0%	373 49.0%	762

Expected Probabilities

Given just the totals, what the expected proportion of entries that should be in each cell? We can get these by multiplying the associated row and column probabilities.

	Spam	Not Spam	
!	14.5%	14.0%	218 28.6%
no !	36.4%	35.1%	544 71.4%
	389 51.0%	373 49.0%	762

Expected Counts

Multiplying the probabilities by the number of documents (762) gives the expected counts.

	Spam	Not Spam	_
!	111.2	106.8	218 28.6%
no !	277.5	266.6	544 71.4%
		373 49.0%	762

Measure Pe

Keep with this idea for a moment. With these proportions, we can compute the probability of observering the exact values (yes, it will be small) that we would get the observered data.

	Spam	Not Spam	_	Spam	Not Spam
ļ	14.5%	14.0%	!	178	40
no !	36.4%	35.1%	no !	211	333

Probability(Right | Left) = Pe

Measuring Po

Similarly, we can compute the probability of observing the data given the observered proportions. This will also be very small, but higher than the other number. The big question is: how much larger?

	Spam	Not Spam	_	Spam	Not Spam
ļ	23.4%	5.25%	!	178	40
no !	27.7%	43.7%	no !	211	333

Probability(Right | Left) = Po

<u>G-Score</u>

To measure the difference between these models, we compute what is called the g-score (or log-likelihood ratio). Higher values will correspond to words that are more strongly associated with a given label.

We can compute the G score for many terms and look at those that are the largest. We can extend this to multiclass classification by computing G scores for each specific category.

