
Decision Tree

T. ARNOLD

Let’s consider our two-class 
classification task once again.



Decision Tree

T. ARNOLD

What if we return to the idea of a 
dividing line, but this time with two 
restrictions: it must be perpendicular to 
one axis and the line will define a fixed 
probability on each side of it.



Decision Tree

T. ARNOLD

With this line, the probabilties will be 
given by the empircal probabilities.



Decision Tree

T. ARNOLD

Now, we can split the data again with a 
line. This line, however, will only split 
on one side of the original line.

Like the first line, it will be 
perpendicular to the variable axes.



Decision Tree

T. ARNOLD

Here are the probabilties for each of 
the three regions.



Decision Tree

T. ARNOLD

How to determine the splits in the first 
place?

Pick the splits that maximise the 
probability of observering the training 
data, just as with logistic regression.

The tree is built greedily. We determine 
the best first split, and then the best 
second split, and so on.



Decision Tree

T. ARNOLD

X > 0.4

Y > 0.42

Prob(⬤) = 0.03 Prob(⬤) = 1.00

Prob(⬤) = 1.00

Notice that the algorithm can also be 
described by a tree-like structure, such 
as the one that follows.



Decision Trees: Assessement

T. ARNOLD

Benefits

- Easy to understand
- Can extend to categorical features
- Can deal with missing values
- Naturally deals with interactions and non-

linearity
- Fast to build and fast to apply to new data
- Invariant to the scale of input variables 

Potential Challenges

- Unstable; High variability with a different data set
- Predictions have a amount of variability in the 

input space
- Can be difficult to built a model with a low error 

rate
- Trouble with boundaries that are not parallel to 

the axes 



Gradient Boosted Trees

T. ARNOLD

The trick to getting around most of the challenges
is to harness the variability of the model by
creating a collection of trees. There are two basic
techniques: random forests and gradient boosted
trees. We’ll work with the latter.



Gradient Boosted Trees

T. ARNOLD

Let’s describe the algorithm for a two-class problem. Start by selecting a starting probability for each
training data point, which we will call P0[i]. Usually this will be a constant.

Now, pick a random subset of the training data and build a decision tree on the residuals of P0[i]. This
tree, when applied to the entire training data, will have predictions for the residuslas for each point
which we will call T1[i].

Next, compute the following probabilities for each point for some small constant 0 < η < 1:

P1[i] = P0[i] + (η × T1[i])

Then, fit another tree on another random subset of the training data that tries to compute the residuals
from the probabilties P1[i]. The residuals T2[i] of these predictions are used to create new predictions:

P2[i] = P1[i] + (η × T2[i])

We repeat this for to K trees, using the final PK[i] as the predictions.



Gradient Boosted 
Trees

T. ARNOLD

Let’s see how this model works with 
some data.



Gradient Boosted Trees

T. ARNOLD

After just 1 tree (η = 0.05).



T. ARNOLD

After 2 trees (η = 0.05).

Gradient Boosted Trees



T. ARNOLD

After 5 trees (η = 0.05).

Gradient Boosted Trees



T. ARNOLD

After 10 trees (η = 0.05).

Gradient Boosted Trees



T. ARNOLD

After 25 trees (η = 0.05).

Gradient Boosted Trees



T. ARNOLD

After 50 trees (η = 0.05).

Gradient Boosted Trees



T. ARNOLD

After 100 trees (η = 0.05).

Gradient Boosted Trees


