
Logistic Regression

T. ARNOLD

Last time we introduced the logistic regression method for 
building a classification algorithm from training data.

In summary, we model the probability of being one of the two 
classes (orange, in the example) is a transformation of a linear 
combination of the feature variables X and Y. 

We then classify the predicted class based on whether the 
probability is greater than 0.5

Probability(⬤) = F(a + b × X + c × Y) 



More Variables

T. ARNOLD

We can easily extend our model to include more feature 
variables by adding them along with a new constant.

While we lose the ability to make simply, pretty visualizations of 
the classification task, most of the same general concepts hold.

For example, with three dimensions, the model creates a 
classification plane in three dimensions that partitions the 
three dimensional space into two halves.

Probability(⬤) = F(a + b × X + c × Y + d × Z) 



Too Many Variables
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In theory we can include as many features as we want. Adding 
up to a dozen or two is usually fine.

However, once we start adding a larger number of features, it 
becomes too easy to find a set of model parameters that can 
seperate the two classes in the training data but is unable to 
work well on the validation data.

The phenomenon of matching the training data in a way that 
does not generalize to new data is called overfitting. It’s hard to 
define a precise way, but you’ll start to understand the concept 
through looking at examples. 



Working with Many Variables
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Fortunately, there is a solution to making logistic regression 
feasible when we have a large number of features. 

In a standard logistic regression we find the set of parameters 
that maximizes how well the data fits the parameters. 
Specifically, we want to maximize the probability of observing 
the data we found assuming the modelling probabilities are 
correct. 

Maximise [ ]Fit

Logistic Regression => 



Penalized Logistic Regression
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In penalized logistic regression, we instead maximize the fit of 
the data minus a measurement of the complexity of the model. 

We use a parameter λ > 0 to control the relative tradeoff 
between fitting the training data well and not having a model 
that is overly complex.

Maximise [ ]Fit – λ × Complexity

Penalized Logistic Regression => 



Elastic Net
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There are several different varieties of penalized regression, 
which depend on the way that we measure the complexity of a 
model. 

The most important for us this semester is a penalized 
regression method called the elastic net. It has a few sub-
varieties, but in its simpliest form, the measure of complexity it 
given by the sum of the absolute value of the non-intercept 
model parameters.

|b| + |c| + |d|Complexity =>



Elastic Net
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It should be clear that using this complexity measurement will 
have parameters that are smaller than those from the standard 
logistic regression.

The amazing thing, which is not immediately clear, is that the 
elastic net method will often set some of the model parameters 
exactly the zero. This is called the parsimonious or model 
selection property.

|b| + |c| + |d|Complexity =>



Elastic Net: Applications
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In addition to being a good overall method for predictive modelling, the 
elastic net is also useful for identifying features that are most related to a 
specific response.

This technique is often used in bioinformatics, for example. One might 
collect data about the genes of 50 patients who repond well to a 
theraputic treatement  and 50 patients who responded poorly. Then, the 
elastic net method to predict treatement outcomes based on the tens of 
thousands of features from the genes. The genes that have non-zero 
parameters are those that might be responsible for whether the 
treatment works.

In this class, we will mostly be doing text prediction where the features 
are the number of times a particular word is used. There are a large 
number of words, but the elastic net will identify the small set of words 
that are important for identifying a particular category.



Finding the Tuning Parameter
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When using the elastic net, how can we find a good value of the 
parameter λ ? If we want to just make good predictions, we can 
use a technique called cross validation. This is an important 
technique in machine learning, so let’s take a moment to 
understand how it works.

In cross validation, we start by randomly partitioning the 
training data into groups that are called folds. We will illustrate 
using an example with three folds:

Fold 1 Fold 2 Fold 3

training data 



Cross Validation
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Now, we fit a collection of elastic net models with different 
values for λ using all the training data except for the data in the 
first fold.

Then, we use each of these models to predict how well they 
perform on the held-out data in the first fold.

Fold 1 Fold 2 Fold 3

training data 



Cross Validation
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Then, we repeat the process but now determine all the model 
parameters using all the training data except for the 
observations found in fold 2.

These model are then used to predict the values in fold 2.

Fold 1 Fold 2 Fold 3

training data 



Cross Validation
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Finally, we do this all again for the data in fold 3.

When we are done, we have a measurement of how well each 
particular value of lambda is able to predict the held-out data in 
each of the folds.

Fold 1 Fold 2 Fold 3

training data 



Cross Validation
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Classification 
Error

Typically, when we are done we have a curve that looks 
something like this. The bars give confidence intervals from 
each of the folds.

λ



Cross Validation
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Classification 
Error

Notice that the best prediction is usually somewhere in the 
middle, with a balance between fit and complexity.

value predicted to be the “best”

“1se” model; typically almost as good as 
best model, but many fewer non-zero 

parameters 

not as predictive, but good for 
identifying the strongest variablesλ

models overfit to the training data



Elastic Net: Summary

T. ARNOLD

The elastic net will be our most important method for building 
predictive models this semester. It allows us to do classification 
with a large number of variables, is able to produce some of the 
most predictive models in many application domains, and 
produces interpretable models.

One thing to keep in mind, that is easy to forget, is that the 
elastic net is a method for producing a linear prediction of 
probabilities. The only thing that is different is the way that we 
pick the parameters in the logistic model. Once choosen, the 
model works exactly the same way. 

Probability(⬤) = F(a + b × X + c × Y + d × Z) 



Multiclass Prediction
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There is one final tweak to the elastic 
net model that we will need. So far we 
have only considered the case where 
there are two classes. Often, though, 
we will want to consider a prediction 
task where there are three or more 
classes.



Multiclass Prediction
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The solution is to build one logistic 
regression model for each class. 
Prediction is then done using the 
maximum label probability for each 
point.

Probability(⬤) = F(a + b × X + c × Y) 
Probability(⬤) = F(d + e × X + f × Y) 
Probability(⬤) = F(g + h × X + i × Y) 



Multiclass Prediction
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Here is a line for the blue class (the 
blue class is below the line):

Probability(⬤) = F(a + b × X + c × Y) 



Multiclass Prediction
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Here’s one for the green class:

Probability(⬤) = F(d + e × X + f × Y) 



Multiclass Prediction
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And finally, one for the orange group.

Probability(⬤) = F(g + h × X + i × Y) 
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This method is called multinomial 
regression, in contrast to logistic 
regression.

Going forward, we will always use 
multinomial regression, and therefore 
use the term elastic net without 
referring to whether we are doing 
logistic or multinomial classification.

Multinomial Regression


