
Logistic Regression

T. ARNOLD

Last time we introduced the logistic regression method for
building a classification algorithm from training data.

In summary, we model the probability of being one of the two
classes (orange, in the example) is a transformation of a linear
combination of the feature variables X and Y.

We then classify the predicted class based on whether the
probability is greater than 0.5

Probability(⬤) = F(a + b × X + c × Y)

More Variables

T. ARNOLD

We can easily extend our model to include more feature
variables by adding them along with a new constant.

While we lose the ability to make simply, pretty visualizations of
the classification task, most of the same general concepts hold.

For example, with three dimensions, the model creates a
classification plane in three dimensions that partitions the
three dimensional space into two halves.

Probability(⬤) = F(a + b × X + c × Y + d × Z)

Too Many Variables

T. ARNOLD

In theory we can include as many features as we want. Adding
up to a dozen or two is usually fine.

However, once we start adding a larger number of features, it
becomes too easy to find a set of model parameters that can
seperate the two classes in the training data but is unable to
work well on the validation data.

The phenomenon of matching the training data in a way that
does not generalize to new data is called overfitting. It’s hard to
define a precise way, but you’ll start to understand the concept
through looking at examples.

Working with Many Variables

T. ARNOLD

Fortunately, there is a solution to making logistic regression
feasible when we have a large number of features.

In a standard logistic regression we find the set of parameters
that maximizes how well the data fits the parameters.
Specifically, we want to maximize the probability of observing
the data we found assuming the modelling probabilities are
correct.

Maximise []Fit

Logistic Regression =>

Penalized Logistic Regression

T. ARNOLD

In penalized logistic regression, we instead maximize the fit of
the data minus a measurement of the complexity of the model.

We use a parameter λ > 0 to control the relative tradeoff
between fitting the training data well and not having a model
that is overly complex.

Maximise []Fit – λ × Complexity

Penalized Logistic Regression =>

Elastic Net

T. ARNOLD

There are several different varieties of penalized regression,
which depend on the way that we measure the complexity of a
model.

The most important for us this semester is a penalized
regression method called the elastic net. It has a few sub-
varieties, but in its simpliest form, the measure of complexity it
given by the sum of the absolute value of the non-intercept
model parameters.

|b| + |c| + |d|Complexity =>

Elastic Net

T. ARNOLD

It should be clear that using this complexity measurement will
have parameters that are smaller than those from the standard
logistic regression.

The amazing thing, which is not immediately clear, is that the
elastic net method will often set some of the model parameters
exactly the zero. This is called the parsimonious or model
selection property.

|b| + |c| + |d|Complexity =>

Elastic Net: Applications

T. ARNOLD

In addition to being a good overall method for predictive modelling, the
elastic net is also useful for identifying features that are most related to a
specific response.

This technique is often used in bioinformatics, for example. One might
collect data about the genes of 50 patients who repond well to a
theraputic treatement and 50 patients who responded poorly. Then, the
elastic net method to predict treatement outcomes based on the tens of
thousands of features from the genes. The genes that have non-zero
parameters are those that might be responsible for whether the
treatment works.

In this class, we will mostly be doing text prediction where the features
are the number of times a particular word is used. There are a large
number of words, but the elastic net will identify the small set of words
that are important for identifying a particular category.

Finding the Tuning Parameter

T. ARNOLD

When using the elastic net, how can we find a good value of the
parameter λ ? If we want to just make good predictions, we can
use a technique called cross validation. This is an important
technique in machine learning, so let’s take a moment to
understand how it works.

In cross validation, we start by randomly partitioning the
training data into groups that are called folds. We will illustrate
using an example with three folds:

Fold 1 Fold 2 Fold 3

training data

Cross Validation

T. ARNOLD

Now, we fit a collection of elastic net models with different
values for λ using all the training data except for the data in the
first fold.

Then, we use each of these models to predict how well they
perform on the held-out data in the first fold.

Fold 1 Fold 2 Fold 3

training data

Cross Validation

T. ARNOLD

Then, we repeat the process but now determine all the model
parameters using all the training data except for the
observations found in fold 2.

These model are then used to predict the values in fold 2.

Fold 1 Fold 2 Fold 3

training data

Cross Validation

T. ARNOLD

Finally, we do this all again for the data in fold 3.

When we are done, we have a measurement of how well each
particular value of lambda is able to predict the held-out data in
each of the folds.

Fold 1 Fold 2 Fold 3

training data

Cross Validation

T. ARNOLD

Classification
Error

Typically, when we are done we have a curve that looks
something like this. The bars give confidence intervals from
each of the folds.

λ

Cross Validation

T. ARNOLD

Classification
Error

Notice that the best prediction is usually somewhere in the
middle, with a balance between fit and complexity.

value predicted to be the “best”

“1se” model; typically almost as good as
best model, but many fewer non-zero

parameters

not as predictive, but good for
identifying the strongest variablesλ

models overfit to the training data

Elastic Net: Summary

T. ARNOLD

The elastic net will be our most important method for building
predictive models this semester. It allows us to do classification
with a large number of variables, is able to produce some of the
most predictive models in many application domains, and
produces interpretable models.

One thing to keep in mind, that is easy to forget, is that the
elastic net is a method for producing a linear prediction of
probabilities. The only thing that is different is the way that we
pick the parameters in the logistic model. Once choosen, the
model works exactly the same way.

Probability(⬤) = F(a + b × X + c × Y + d × Z)

Multiclass Prediction

T. ARNOLD

There is one final tweak to the elastic
net model that we will need. So far we
have only considered the case where
there are two classes. Often, though,
we will want to consider a prediction
task where there are three or more
classes.

Multiclass Prediction

T. ARNOLD

The solution is to build one logistic
regression model for each class.
Prediction is then done using the
maximum label probability for each
point.

Probability(⬤) = F(a + b × X + c × Y)
Probability(⬤) = F(d + e × X + f × Y)
Probability(⬤) = F(g + h × X + i × Y)

Multiclass Prediction

T. ARNOLD

Here is a line for the blue class (the
blue class is below the line):

Probability(⬤) = F(a + b × X + c × Y)

Multiclass Prediction

T. ARNOLD

Here’s one for the green class:

Probability(⬤) = F(d + e × X + f × Y)

Multiclass Prediction

T. ARNOLD

And finally, one for the orange group.

Probability(⬤) = F(g + h × X + i × Y)

T. ARNOLD

This method is called multinomial
regression, in contrast to logistic
regression.

Going forward, we will always use
multinomial regression, and therefore
use the term elastic net without
referring to whether we are doing
logistic or multinomial classification.

Multinomial Regression

