
College Acceptance

T. ARNOLD

Let’s start with a relatively simple 
prediction task, where we try to predict 
whether a student will get accepted to 
UR based on their high school GPA and 
SAT score.

We have data for 60 students. Blue 
represents rejection and orange 
represents acceptence. Note: this data 
is completely fake!

How well do you think you can predict 
whether a student will be accepted 
based on these two variables?



College Acceptance
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Before going any further, let’s get some 
terminology down:

Observation: one data point that we 
can use to build a model; here each 
observation is a student

Features: the measurements the model 
used to make predictions; here we have 
two features: H.S. GPA and SAT scores

Label: these are is the thing we are 
trying to predict; each student has one 
label

Classes: these are the possible values 
of the labels; here, the classes are 
accepted or rejected 



Predict New Data
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Now we will add four students to the 
dataset, but not reveal whether they 
were accepted to UR.

Without any fancy models, what would 
you predict for each of these students?
Why? Are you relatively confident about 
these predictions?



Predict New Data
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Now, consider these three students. 

What you predict if you had to guess 
whether they would be accepted to UR? 
How confident do you feel about these 
predictions?



Predict New Data
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Now, consider these three students. 

What you predict if you had to guess 
whether they would be accepted to UR? 
How confident do you feel about these 
predictions?

These values are always going to be 
difficult to predict. But, to be able to 
make any reasonable guess, it would 
seem like we might need a more formal 
model.



Classification Line
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One of the most versitile methods for 
building a predictive model is to find a 
way to split the data by using a line. We 
expect points on one side of the line to 
be of one label and points on the other 
side of the line to be of a different label.

I have drawn a line on our plot. Does it 
seem to reasonably seperate the two 
labels? 

We will come back in a moment to 
discuss the specific process for 
constructing a good seperating line. 



Classification Line
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Now with our line we can make 
predictions for each of the difficult 
points.

What label does our model predict for 
each of the three students for which we 
do not have labels? How confident are 
you in these predictions?



Model Evaluation
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One important task in prediction 
modelling is to evaluate how well our 
model is able to make predictions on 
new values. We can do this by using the 
error rate, which is simply the 
percentage of predicted labels that were 
incorrect.

In the model we built on the right, our 
error rate is 0%. It’s perfect! But, we are 
cheating a bit because we are evaluating 
the model with the same data that was 
used to build the model.



Model Evaluation
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The most common approach to this 
issue is to randomly split our data into 
two parts:

Training data: data used to build a 
predictive model

Validation data: data used to evaluate 
how well the model works on new data

In the plot to the right, we have four 
validation points defined by the white 
circles. These are not used when 
defining the classification line.



Model Evaluation
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Now, we can evaluate the model. Note 
that it made three correct predictions 
and one incorrect prediction.

The model has a training error rate of 
0% and a validation error rate of 25%.



Confusion Matrix
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Another way to evaluate a model is to 
build a confusion matrix. This gives a 
more grainular view of the errors that 
occur on the validation data. It is 
easiest to understand with an example:



Choosing a Line
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Let’s return to the task of building a 
model from training data. 

Previously, I drew a line and we agreed 
that it seemed reasonable because it 
had an error rate of zero on the 
training data. However, there are 
many lines that have an error rate of 
zero on this training data. Example are 
given on the right.



Choosing a Line
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Consider a similar task, but with some 
different data. We will move an abstract 
features called x and y. You can still think 
of the college acceptance example if you 
prefer something concrete.

Notice that in this case there is no line 
that perfectly seperates the two label 
types.

We could choose a line based on one 
that makes the fewest errors, but there 
will again be many different choices that 
we need to choose between.



Probability
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A probability is a number between 0 and 1
that gives the proportion of times we 
would expect an event to happen if we 
could replicate observing something many 
times.

It turns out that the best approach to 
building a classification line is to consider 
the slightly more complex task of 
predicting the probability that a point is 
equal to one of the two classes.



Probability Model

T. ARNOLD

Let’s define a model with three 
parameters, numbers that define the 
model, according to the equation to the 
right.

The values a, b, and c can be set to any 
real numbers we want. The idea is that 
we will use the training data to 
determine good values for them and 
then can use the model to predict values 
on the validation data (or even, entirely 
new data that we do not yet have).

Probability(⬤) = a + b × X + c × Y 



Classification Line
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Points with a probability greater than 0.5 are 
those where we think that the point is likely to 
be orange.

With some simple algebra, we can re-arrange to 
see that (assuming c is positive),* this defines a 
line with a slope and intercept.

So, we see that this model defines a linear 
classification line!

* When c is negative, the inequality reverses, which 
still makes a line, but with the orange points below 
rather than above. A value of zero gives a horizontal 
line; still okay, but some of the math gets a bit messy.

Probability(⬤) = a + b × X + c × Y 

0.5 < a + b × X + c × Y 
0.5 – a – b × X < c × Y 
(0.5 / c – a / c) – (b / c) × X < Y

Y > (-b / c) × X + (0.5 / c – a / c) 
Y > [slope] × X + [intercept]



One Tweak
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There is one issue with our model: it is 
possible that we could produce 
probabilities that are less than zero or 
greater than 1. This can be fixed fairly 
easily by adding a link function that 
maps any real number to a number 
between zero and one. 

The most common choice is the logistic 
function: exp(x) / (exp(x) + 1). A 
visualization of the function is shown 
on the right. 

Probability(⬤) = F(a + b × X + c × Y)



Classification Line (again)
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This does not actual affect our primarily 
conclusion before that the model creates a 
classification line. The only different is that 
now we want to find points where the value 
of (a + b × X + c × Y) is 0 instead of 0.5.

Probability(⬤) = F(a + b × X + c × Y)

0 < a + b × X + c × Y 
0 – a – b × X < c × Y 
(a / c) – (b / c) × X < Y

Y > (-b / c) × X – (a / c) 
Y > [slope] × X + [intercept]



Learning Parameters
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Okay great, but we still have not explain 
how to learn the values a, b, and c from the 
training data.

The trick is to notice that our model now 
gives specific probabilities that each point is 
equal to a particular class. What we can do 
then is find the values of a, b, and c that 
maximize the probability of observering the 
training data.

Because we have continuous probabilities, 
this will almost always have a unique 
solution. We won’t go through all of the 
math here; there is no analytic solution, but 
it can be solved using fast numerical 
methods.

Probability(⬤) = F(a + b × X + c × Y) 



Prediction
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Let’s go back to our data and look at the 
line defined by the model. Note that it 
seperates the data well but not perfectly.



Prediction
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Because we have probabilities, we can 
actually plot different contours of 
probabilities. Each of these will be a 
parallel line. Notice how quickly the 
probabilties drop off as we move away 
from the classification line.



Interpret Parameters
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Because of the transformation by the link function 
and the relative scales of X and Y, it is can hard to 
directly interpret the exact meaning of the values
a, b, and c. However, we can say something things:

– If b is positive, X appears to be positively 
related to the orange class.

– If b is negative, X appears to be negatively 
related to the orange class.

– If b is zero (or very small), X appears to have 
little to no effect on an observation’s label.

The same things can be said with repect to c and the 
variable Y.

Probability(⬤) = F(a + b × X + c × Y) 



Wrap-Up
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We have covered a lot today. The method 
we defined is called logistic regression. It is 
perhaps the most fundamental method in 
all of machine learning.

Make sure to review these notes before the 
next class!


