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Worksheet 19 (Solutions)

1. Let Z ∼ N(0, 1). It can be shown that E|Z| =
√

2/π. Use
Markov’s inequality to bound the probabilities: (a) P[|Z| > 1.28], (b)
P[|Z| > 1.96], (c) P[|Z| > 2.58], and (d) P[|Z| > 3.89]. Compare these
to the exact quantities on the handout.

Solution:

This is quite straightforward:

P[|Z| ≥ 1.28] ≤
√

2/π

1.28
≈ 0.623

P[|Z| ≥ 1.96] ≤
√

2/π

1.96
≈ 0.407

P[|Z| ≥ 2.58] ≤
√

2/π

2.58
≈ 0.309

P[|Z| ≥ 3.89] ≤
√

2/π

3.89
≈ 0.205

So, these are decreasing much (much) slower than the exact values.

2. Chebychev’s inequality (see the reference sheet) can be derived
directly from Markov’s inequality. Let X be a random variable with
mean µ and variance σ2. Define Y = (X − EX)2 and apply Markov’s
inequality with X → Y and a → a2 (remember, a can be any positive
constant so we can replace it with a squared version of itself if we do
so on both sides). Plug the value of Y back in, use the definition of
variance, and simplify to derive Chebychev’s inequality

Solution: Apply Markov’s Inequality with X → Y and a → a2 and
then plugging back the value for Y yields:

P[|Y | > a2] ≤ E|Y |
a2

P[(X − EX)2 > a2] ≤ E(X − EX)2

a2

P[(X − µ)2 > a2] ≤ σ2

a2

Taking the square root of both sides inside the probability gives:

P[|X − µ| > a] ≤ σ2

a2

And that’s all we need for Chebychev’s inequality.

3. Let Z ∼ N(0, 1). Use Chebychev’s inequality to bound the prob-
abilities: (a) P[|Z| > 1.28], (b) P[|Z| > 1.96], (c) P[|Z| > 2.58], (d)
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P[|Z| > 3.89]. Compare these to the previous results. Which ones are
tighter?

Solution:

This is quite straightforward as well:

P[|Z| ≥ 1.28] ≤ 1

1.282
≈ 0.610

P[|Z| ≥ 1.96] ≤ 1

1.962
≈ 0.260

P[|Z| ≥ 2.58] ≤ 1

2.582
≈ 0.150

P[|Z| ≥ 3.89] ≤ 1

3.892
≈ 0.066

These are tighter bounds than Markov gives, particularly for the last
two. But, they are still quite a ways away from the exact values.

4. Chernoff’s inequality (see the reference sheet) can also be derived
directly from Markov’s inequality. Let X be a random variable with
a well-defined moment generating function. Apply Markov’s inequality
with |X| → etX (the new value is also positive, so no need for absolute
value) and a → eta. Simplify the part inside of the probability on the
left-hand side to derive Chernoff’s inequality.

Solution: Apply Markov’s Inequality with |X| → etX and a → eta

yields:

P[etX > eta] ≤ EetX

eta

Taking the log of both sides in the interior of the probabilty gives:

P[tX > ta] ≤ EetX

eta

P[X > a] ≤ EetX

eta

And that’s Chernoff’s inequality as written on the worksheet.

5. Chernoff’s inequality has an extra term in it, the t, that provides
a whole family of bounds for a given value of a. The tightest bound
depends on the distribution. Let Z ∼ N(0, 1). Using the moment gener-
ating function, what value of t provides the tightest bound on E[Z ≥ a]?

Solution: Plugging in the moment generating function, we have the
following bound of Z:

P[X > a] ≤ EetX

eta

≤ e
1
2 t

2

eta
= e

1
2 t

2−ta
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The quantity on the right will be minimized by the value in the exponent
( 1
2 t

2 − ta) is minimized. This is a quadratic polynomial; taking the
derivative and setting it equal to 0 gives t = a at the minimum, which
has the following final bound on the tail probability from Chernoff’s
inequality for a standard normal Z:

P[X > a] ≤ e−
1
2a

2

.

That turns out to be the correct limiting distribution of the tail of a
normal.

6. Let Z ∼ N(0, 1). Use Chernoff’s inequality (and the tightest value
of t from the previous question) to compute bounds on the following: (a)
P[|Z| > 1.28], (b) P[|Z| > 1.96], (c) P[|Z| > 2.58], and (d) P[|Z| > 3.89].
Note that due to the symmetry of the normal distribution, you can dou-
ble the probability that Z is larger than some a to get the probability
that |Z| is larger than a. You should notice an interesting pattern rela-
tive to the other bounds that we have.

Solution:

This is quite straightforward as well:

P[|Z| ≥ 1.28] ≤ 2× e−
1
2 (1.28)

2

≈ 0.882

P[|Z| ≥ 1.96] ≤ 2× e−
1
2 (1.96)

2

≈ 0.293

P[|Z| ≥ 2.58] ≤ 2× e−
1
2 (2.58)

2

≈ 0.072

P[|Z| ≥ 2.58] ≤ 2× e−
1
2 (3.89)

2

≈ 0.001

The first is much more than even the basic Markov bound. The second
is better than the Markov bound and just a little worse than Chebyshev.
The third, and particularly the fourth, are much better than the previous
bounds.

7. (Weak Law of Large Numbers) Let’s finish with a result that shows
the power of these tail inequalities for establishing theoretical results.
Let X1, X2, . . . be a sequence of i.i.d. random variables that come from
a distribution with finite mean µ and finite variance σ2. For any positive
n, define the sample mean to be:

X̄n =
X1 + · · ·+Xn

n

Then, for any ϵ > 0:

lim
n→∞ P(|X̄n − µ| > ϵ) = 0.

Prove that this is true using Chebyshev’s inequality. Hint: Compute the
mean and variance of X̄n and then just apply the theorem as-is.
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Solution: The mean and variance of X̄n are:

EX̄n =
1

n

∑
i

EXi =
1

n
× n · µ = µ

V arX̄n =
1

n2

∑
i

V ar(Xi) =
1

n2
× n · σ2 = σ2/n

Plugging these into Chebyshev’s inequality with a = ϵ, we get:

P[|X̄n − µ| > ϵ] ≤ σ2/n

ϵ2

Notice that the limit of the right-hand side will go towards zero for a
sufficently large n, and therefore we have proved the Weak Law of Large
Numbers as stated in the question.


