Common Distributions and Inequalities

The following table provides the notation, density, mean, variance, and moment generating functions of the families of distributions that we will study. A few of the more complicated formulae are left blank. I have not written the support of the parameters of density functions; these should be clear from the way we defined them. Note that the Geometric, Gamma, and Negative Binomial have alternative parameterizations. You may see different results in other resources.

Distribution	Notation	${ m PMF/PDF}$	Mean	Variance	MGF
Bernoulli	Bernoulli(p)	$p^x(1-p)^{1-x}$	p	p(1-p)	$(1 - p + pe^t)$
Binomial	Bin(n,p)	$\binom{n}{x}p^x(1-p)^{n-x}$	np	np(1-p)	$(1 - p + pe^t)^n$
Geometric	Geom(p)	$(1-p)^{x-1}p$	1/p	$(1-p)/p^2$	$\frac{pe^t}{1 - (1 - p)e^t}$
Negative Binomial	NB(k,p)	$\binom{x-1}{k-1}(1-p)^{x-k}p^k$	k/p	$k(1-p)/p^2$	$\left(\frac{pe^t}{1 - (1 - p)e^t}\right)^k$
Hypergeometric	HG(N,K,n)	$\binom{K}{k} \binom{N-K}{n-k} / \binom{N}{n}$	nK/N		
Poisson	$Poisson(\lambda)$	$\frac{\lambda^x e^{-\lambda}}{x!}$	λ	λ	$e^{\lambda(e^t-1)}$
Exponential	$Exp(\lambda)$	$\lambda e^{-\lambda x}$	λ^{-1}	λ^{-2}	$\frac{\lambda}{\lambda - t}$
Gamma	$Gamma(\alpha, \beta)$	$\frac{1}{\Gamma(\alpha)\beta^{\alpha}} \cdot x^{\alpha-1} e^{-x/\beta}$	$\alpha\beta$	$\alpha \beta^2$	$(1-\beta t)^{-\alpha}$
Beta	$Beta(\alpha, \beta)$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \cdot x^{\alpha-1} (1-x)^{\beta-1}$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	
Uniform	U(a,b)	$(b-a)^{-1}$	$\frac{1}{2}(b-a)$	$\frac{1}{12}(b-a)^2$	
Normal	$N(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$	μ	σ^2	$\exp\{\mu t + \frac{1}{2}\sigma^2 t^2\}$
Chi-squared	χ_k^2	$\frac{1}{2^{k/2}\Gamma(k/2)} x^{k/2-1} e^{-x/2}$	k	2k	$(1-2t)^{-k/2}$
Student-T	t_n	•	0	t / (t - 2)	
F-Distribution	$F(d_1, d_2)$		$\frac{d_2}{d_2 - 1}$		
Cauchy	$C(\gamma)$	$\frac{1}{\pi/\gamma(1+(x/\gamma)^2)}$	undefined	undefined	undefined

We will also find it useful to have a reference for the following inequalities.

(Markov's Inequality) Let X be a random variable. Then for any a > 0,

$$\mathbb{P}[|X| \ge a] \le \frac{\mathbb{E}|X|}{a}.$$

(Chebyshev's Inequality) Let X be a random variable with mean μ and variance σ^2 . Then for any a > 0,

$$\mathbb{P}[|X - \mu| \ge a] \le \frac{\sigma^2}{a^2}.$$

(Chernoff's Inequality) Let X be a random variable. Then for any a > 0 and t > 0,

$$\mathbb{P}[X \ge a] \le \frac{\mathbb{E}[e^{tX}]}{e^{ta}}.$$