
Temporal Data

T. ARNOLD

date

ymd('2021-10-10')
make_date(2021, 10, 10)

as_date(<datetime>)

+/- 1 (back/ahead by 1 day)

year(), month(), day(),
isoweek(), wday()

We will deal with time data by creating a new type of column.

datetime

ymd_hms('2021-10-10 03:50')
make_datetime(2021, 10, 10, 3, 50)
as_datetime(<date>|<hms> | <int>)

+/- 1 (back/ahead by 1 second)
floor_date(), round_date()

+ hour(), minute(), second()

hms (time)

hms('03:50:00’)

as_hms(<datetime>)

+/- 1 (back/ahead by 1 second)

+ hour(), minute(), second()

CR
EA

TE
M

ODIFY

EX
TR

ACT

Loading Temporal Data

T. ARNOLD

When R reads in data from a CSV file that has dates or date times stored in a
ISO 8601 format (such as YYYY-MM-DD or YYYY-MM-DD HH:MM), it will
automatically create a <date> or <dttm> data type.

Another common way to store time data is as an integer representing Unix
time. This is the number of seconds since 1 January 1970. These won’t be
automatically converted; use as_datetime(). Often JSON data will contain Unix
time but in milliseconds. Just divide by 1000 before using the function.

Hand constructed datasets may have dates in other weird formats. The
functions ymd() and varients can handle most things that are consistent.
Otherwise some tricky data cleaning with stringi may be needed.

Plotting Temporal Data

T. ARNOLD

If you put a date, datetime, or time object as a x- or y-aesthetic in a plot, it will
generally work as you expect. However, as with color in spatial plots, you will
often want to modify the default scales to make the plot easier to read. This
can be done with (_y_ version exist as well):

scale_x_date()
scale_x_datetime()
scale_x_time()

The first two have options date_breaks, date_labels, and date_minor_breaks
that accept easy-to-use options (Note: it is always "date", never "datetime").

Times do not have the same flexibility. I find it best to use as_datetime() to
squish the times into a single day and plot that instead.

